CECS - CENTRO DE ENGENHARIA, MODELAGEM E CIÊNCIAS SOCIAIS APLICADAS
Perfil Pessoal
Descrição pessoal
Possui graduação em Engenharia Elétrica, habilitação Engenharia de Produção, pela Universidade Federal de Santa Catarina, UFSC (2002), mestrado em Engenharia Elétrica (opção Engenharia Biomédica) pela UNICAMP (2009) e PhD in Bioengineering, Engineering Department, University of Leicester (2013). Atualmente é Professor Adjunto I do curso de Engenharia Biomédica da Universidade Federal do ABC (UFABC) e Pesquisador Colaborador da Divisão de Bioengenharia do Instituto do Coração da Faculdade de Medicina da Universidade de São Paulo (InCor-FMUSP). Realizou pós-doutoramento na Universidade de Mogi das Cruzes, São Paulo (2014-2015) e no InCor-FMUSP, São Paulo (2015). Tem experiência na área de Engenharia Biomédica, com ênfase em Bioengenharia, atuando principalmente nos seguintes temas: 1) Atividade elétrica do coração e 2) Autorregulação Cerebral. O enfoque do trabalho está principalmente nas áreas de processamento de sinais fisiológicos, instrumentação, eletrofisiologia e fisiologia cardiovascular. E membro da IEEE e membro titular da Sociedade Brasileira de Engenharia Biomédica.
Formação acadêmica/profissional (Onde obteve os títulos, atuação profissional, etc.)
* University of São Paulo, São Paulo, Brazil Post-doctorate, Cardiac Signal Processing at Heart Institute (InCor), June 2015.
* University of Mogi das Cruzes, Mogi das Cruzes, Brazil Post-doctorate, Cardiac Signal Processing, March 2015.
* University of Leicester, Leicester, UK PhD, Bioengineering (Cardiac Signal Processing & Modeling), January 2014 Thesis: High Density Frequency Mapping of Human Intracardiac Persistent Atrial Fibrillation Electrograms.
*University of Campinas, Campinas, Brazil Msc, Biomedical Engineering Department (Biomedical Instrumentation), July 2009 Dissertation: Ultrasound ceramic transducer arrays: control, transmission and reception circuits.
* Ministry of Science and Technology & Cadence Design Systems, Campinas, Brazil Integrated Circuit Designer, National Program of Integrated Circuit Design, December 2008.
*Federal University of Santa Catarina, Florianopolis, Brazil Bsc, Electrical Engineering, December 2002.
*Técnico em Eletrotécnica, Instituto Politécnico de Londrina-Pr, Brasil, 1996.
Áreas de Interesse
(áreas de interesse de ensino e pesquisa)
Cardiac Arrhythmias and Electrophysiology The aims of this research is to help cardiologists and researchers to understand cardiac arrhythmias mechanisms and its conduction system patterns on both human and animal experimental models. The developing of new technologies and tools for real time implementation that can be translated into clinic for better diagnosis, treatment options and outcome are also of interest. Key publications:
Salinet, JL; Schlindwein, FS; Stafford, P; Almeida, TP ; Li, X; Vanheusden, FJ; Guillem, MS; Ng, GA. Propagation of meandering rotors surrounded by high dominant frequency areas in persistent atrial fibrillation. Heart Rhythm v. 14(9), p. 1269-78, 2017.
LI, X; Salinet, JL; Almeida, TP ; Vanheusden, FJ; Chu, G; NG, GA; Schlindwein, FS. An interactive platform to guide catheter ablation in human persistent atrial fibrillation using dominant frequency, organization and phase mapping. Comput Methods Programs Biomed 2017;141:83-92.
Salinet, JL; Tuan, JH; Sandilands, AJ; Stafford, P; Schlindwein, FS; NG, GA. Distinctive Patterns of Dominant frequency trajectory behavior in drug-refractory persistent atrial fibrillation: preliminary characterization of spatiotemporal instability. J Cardiovasc Electr 2014;25:371-379.
Cerebral Autoregulation To maintain the balance between the supply and demand of blood flow, the brain has a mechanism of autoregulation that protects it from fluctuations in blood pressure and maintain the cerebral blood flow constant between the blood pressure limits (60-140 mmHg). In addition, it would provide protection against cerebral ischemia during hypotension. The mechanism of autoregulation also protects the cerebral vessels against excessive blood flow during arterial hypertension, which could lead to an increase in cerebral blood volume and consequently leading to cerebral edema. This research investigates the mechanism status, using signal-processing techniques, in different neurological diseases to better understand the underlying pathophysiological mechanisms.
Medical Device Regulations Electro-medical devices (EMD) are widely used to monitor physiological signals, to diagnose and to treat patients diseases. Efforts to guarantee EMD quality based on medical device safety and risk management, Governmental regulation of medical devices and National and international standards systems are of interest in this research