Referências: |
BISHOP, Christopher M.. Neural networks for pattern recognition. New York: Oxford University Press, 1995. 482 p.
DUNHAM, Margaret H. Data mining: introductory and advanced topics. Upper Saddle River, N.J: Prentice Hall/Pearson, 2003. 315 p.
EIBEN, Agoston E; SMITH, J E. Introduction to Evolutionary Computing. New York, EUA: Springer, 2003. 299 p. (Natural Computing Series).
HAYKIN, Simon. Redes neurais: princípios e prática. 2 ed. Porto Alegre: Bookman, 2001. 900 p.
TAN, Pang-Ning; STEINBACH, Michael; KUMAR, Vipin. Introdução ao DATA MINING: mineração de dados. Rio de Janeiro: Editora Ciência moderna, 2009. 900 p.
WASSERMAN, Larry. All of statistics: a concise course in statistical inference. New York: Springer, 2004. 442 p. (Springer texts in statistics). ALPAYDIN, Ethem. Introduction to machine learning. 2ª. ed. Cambridge, MA: The MIT Press, 2010. 537 p.
DUDA, Richard O; HART, Peter E; STORK, David G. Pattern classification. 2 ed. New York: Wiley, 2001. 654 p.
GOLDBERG, David E. Genetic Algorithms: in Search, Optimization, and Machine Learning. Boston: Addison Wesley, 1989. 412 p.
MICHALEWICZ, Z. Genetic algorithms + data structures: evolution programs. 3 ed. New York: Springer Verlag, 1996. 387 p.
MITCHELL, Tom m. Machine learning. Boston: WCB McGraw-Hill, 1997. 414 p. (Mcgraw-Hill series in computer science).
SCHÖLKOPF, Bernhard; SMOLA, Alexander J. Learning with kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Cambridge, Mass: MIT Press, 2002. 626 p.
WITTEN, Ian H; FRANK, Eibe. Data mining: pratical machine learning tools and techniques. 2 ed. New York: Elsevier; Morgan Kaufmann, 2005. 524 p. |