Referências: |
BRACHMAN, Ronald J; LEVESQUE, Hector J. Knowledge representation and reasoning. San Francisco, CA: Elsevier, 2003. 381 p.
GHALLAB, Malik; NAU, Dana; Traverso, Paolo. Automated planning: theory and practice. Amsterdam: Elsevier; Morgan Kaufmann Publishers, 2004. 635 p.
LUGER, George F. Artificial intelligence: structures and strategies for complex problem solving. 6ª. ed. Boston: Pearson Addison-Wesley, 2009. 754 p.
MITCHELL, Tom m. Machine learning. Boston: WCB McGraw-Hill, 1997. 414 p. (Mcgraw-Hill series in computer science).
RUSSELL, Stuart; NORVIG, Peter. Artificial intelligence: a modern approach. 3 ed. New Jersey: Prentice Hall, 2010. 1132 p. (Prentice Hall series in Artificial Intelligence).
SUTTON, Richard S; BARTO, Andrew G. Reinforcement learning: an introduction. Cambridge, EUA: MIT Press, 1998. 322 p. (Adaptive computation and machine learning). CLOCKSIN, W.F.; MELLISH, C.S. Programming in Prolog. 5th ed. Berlin: Springer-Verlag, 2003. 299 p.
MINSKY, M.; PAPERT, S. Perceptrons expanded edition: an introduction to computational geometry.
PEARL, Judea. Probabalistic Reasoning In Intelligent Systems: networks of plausible inference. San Mateo: Morgan Kaufmann, 1988. 552 p. |