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A B S T R A C T   

Among bioluminescent beetles of the Elateroidea superfamily, Phengodidae is the third largest family, with 244 
bioluminescent species distributed only in the Americas, but is still the least studied from the phylogenetic and 
evolutionary points of view. The railroad worm Phrixothrix hirtus is an essential biological model and symbolic 
species due to its bicolor bioluminescence, being the only organism that produces true red light among biolu-
minescent terrestrial species. Here, we performed partial genome assembly of P. hirtus, combining short and long 
reads generated with Illumina sequencing, providing the first source of genomic information and a framework for 
comparative analyses of the bioluminescent system in Elateroidea. This is the largest genome described in the 
Elateroidea superfamily, with an estimated size of ~3.4 Gb, displaying 32 % GC content, and 67 % transposable 
elements. Comparative genomic analyses showed a positive selection of genes and gene family expansion events 
of growth and morphogenesis gene products, which could be associated with the atypical anatomical develop-
ment and morphogenesis found in paedomorphic females and underdeveloped males. We also observed gene 
family expansion among distinct odorant-binding receptors, which could be associated with the pheromone 
communication system typical of these beetles, and retrotransposable elements. Common genes putatively regu-
lating bioluminescence production and control, including two luciferase genes corresponding to lateral lanterns 
green-emitting and head lanterns red-emitting luciferases with 7 exons and 6 introns, and genes potentially 
involved in luciferin biosynthesis were found, indicating that there are no clear differences about the presence or 
absence of gene families associated with bioluminescence in Elateroidea.   

1. Introduction 

Among the three main families of bioluminescent beetles, the less 
studied and most enigmatic one is Phengodidae, which contains the so- 
called railroad worms. This family has 35 genera and about 200 species 

distributed in the Americas in three tribes, Pennicilloporini, Phengodini, 
and Mastinocerini; the latter being distributed mainly in the Neotropical 
region (Wittmer, 1976; Viviani and Bechara, 1997; O’Keefe et al., 2002; 
Viviani, 2002). One of the differential and unique characteristics of 
these atypical beetles is the occurrence of paedomorphy in adult 
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females, underdeveloped males with large plumose antennae suited for 
pheromone detection (Tiemann, 1967; Crowson, 1972), and spectacular 
bicolor bioluminescence in Mastinocerini tribe larvae and females 
(Viviani and Bechara 1997). The railroad worms of the genus Phrixothrix 
are certainly the most spectacular examples of bioluminescence in 
Phengodidae, with red-light emitting cephalic and post cephalic lanterns 
and rows of yellow-green emitting lanterns along the body (Tiemann, 
1967). The Phrixothrix hirtus has been used as an essential biological 
model for biochemical and molecular studies of luciferases and biolu-
minescence color modulation (Viviani et al., 1999; 2001; 2004; 2013; 
2021; Viviani and Ohmiya, 2000; Amaral et al., 2016b; Bevilaqua et al., 
2019). The bicolor bioluminescence is caused by the presence of 
paralogous luciferase isozymes in the head and lateral body lanterns 
(Viviani et al., 1999), which likely arose by events of gene duplication in 
the Mastinocerini tribe (Arnoldi et al., 2010). The luciferase cDNAs were 
cloned and characterized (Viviani et al., 1999), and structural–func-
tional studies suggest that red bioluminescence is caused by a larger 
active site cavity (Bevilaqua et al., 2019). Recently, RNA-Seq analysis of 
the lateral lanterns and fat body of P. hirtus identified several 
luciferase-like enzymes in these tissues but only a luciferase in the 
photogenic tissues (Amaral et al., 2017a,b), suggesting that biolumi-
nescence in phengodids did not arise from the fat body, such as in the 
case of fireflies (Viviani et al., 2008; Tonolli et al., 2011). With the 
exception of cDNA cloning, phylogeny studies based on molecular 
markers, and, more recently, functional genomics based on transcrip-
tional analysis, the genome organization of this interesting family of 
beetles remains unknown. 

Genome analysis has been generally used to understand genetic 
control and evolution, and in the case of the Elateroidea superfamily, to 
understand the processes that drive the diversification and evolution of 
bioluminescence. The genome size estimation in Elateroidea based on 
flow cytometry was also performed for all bioluminescent families 
(Hanrahan and Johnston, 2011; Liu et al., 2017; Lower et al., 2017). 
These studies indicated that the genome sizes among species of this 
superfamily range from 0.4 Gb to 2.2 Gb and identified a positive rela-
tionship between genome size and the number of transposable elements. 

The first genome sequences and assemblies in Elateroidea were done 
for Photinus pyralis firefly (Lampyridae) and Ignelater luminosus click- 
beetle (Elateridae) (Fallon et al., 2018). These genomic analyses 
showed the divergence of the ancestral luciferase, supporting the inde-
pendent origins of bioluminescence in Elateridae and Lampyridae. They 
also showed the existence of two distinct luciferase genes in P. pyralis 
firefly located in two chromosomes, suggesting events of gene duplica-
tion associated with a translocation between the chromosomes, 
explaining the presence of two luciferases isozymes in the lanterns and 
fat body in distinct life stages and tissues of fireflies (Strause and DeLuca, 
1981; Viviani et al., 2008; Oba et al., 2010; Bessho-Uehara and Oba, 
2017; Carvalho et al., 2020). In addition, genomic and transcriptomic 
analyses of two Palearctic firefly species, Abscondita terminalis and 
Lamprigera yunnana, suggested putative luciferin biosynthesis pathways 
in fireflies (Zhang et al., 2020), involving several gene products, which 
were also found in RNA-Seq analyses of other Elateroidea species 
(Vongsangnak et al., 2016; Amaral et al., 2017a,b; 2019b). Although 
such studies brought essential contributions and insights into the 
genome organization and evolution of the families Lampyridae and 
Elateridae, the genome information of the third family of Elateroidea, 
Phengodidae, remains unknown. The genome sequence and organiza-
tion in this family is a missing link for better understanding the origin, 
evolution, and genetic control of biological processes such as paedo-
morphy and bioluminescence in this critical family and Elateroidea 
superfamily. 

Here, we report the first draft genome assembly of a Phengodidae 
species, the South-American P. hirtus E.Olivier (1909) railroad worm, 
using both genomic short-read and mate-pair libraries. This species 
displays the largest genome among Elateriformia species studied, as well 
as the presence of several transposable element families. With this draft 

genome, we produced a partial genome assembly, which is a novel 
important source of information for future structural, genetic, 
biochemical, proteomic, and evolutionary studies and for comparative 
genomic analyses in Coleoptera species. 

2. Materials and methods 

2.1. Sampling, DNA extraction, and library construction 

One larval individual of P. hirtus was manually collected at “Fazenda 
Santana” (Souza, Campinas/SP, Brazil, 22◦44ʹ45ʹʹS 47◦06ʹ33ʹʹW) and 
identified by Prof. Dr. Vadim Viviani. The sample was stored at − 80 ◦C 
until DNA extraction. Genomic DNA was extracted from whole larvae 
using a DNeasy Blood Tissue Kit (Qiagen, USA) according to the man-
ufacturer’s instructions. The DNA quantity and quality were measured 
using a NanoVue (GE HealthCare) and Qubit 3.0 fluorometer (Ther-
moFisher, USA), and the integrity was checked in agarose gel. Two 
genomic DNA libraries were prepared: i.) using the TruSeq DNA PCR- 
free library prep kit with fragments of 150 bp and ii.) Nextera Mate 
Pair library prep with fragments of 2,000 bp (Illumina, USA). The short- 
read paired-end libraries were sequenced in two independent lanes, and 
the mate-pair library was sequenced in one lane using the Illumina 
HiSeq4000 platform (Illumina, USA). Library construction and 
sequencing were performed by Hokkaido System Science Co. (Sapporo, 
Hokkaido, Japan). The raw read data and final genome assembly of 
P. hirtus are deposited and available at the BioProject PRJNA741915. 

2.2. Preprocessing data, de novo genome assembly, and annotation 

The reads obtained were checked by FastQC v0.11.6 software (htt 
ps://www.bioinformatics.babraham.ac.uk/projects/fastqc/), and 
adaptors and low-quality reads (Phred Q ≤ 30) were removed using 
FASTX-TOOLKIT v0.0.14 (http://hannonlab.cshl.edu/fastx_toolkit/) for 
the paired-end library and NxTrim (O’Connell et al., 2015) for the mate- 
pair library. We used DeconSeq v.0.4.3 (Schmieder and Edwards, 2011) 
software and the RefSeq database (bacteria and viruses) (accessed in 
April 2018) to remove any contamination within the raw data 
sequencing. After filtering processes, we proceeded to downstream 
genomic assembly. 

We estimated the best k-mer length for the P. hirtus genome assembly 
using KmerGenie 1.705 (Chikhi and Medvedev, 2014), which was k = 81 
(data not shown). The genome coverage and size heterozygosity were 
estimated with the estimate_genome_size.pl script (available at https://gi 
thub.com/josephryan/estimate_genome_size.pl), Jellyfish2 v.2.2.3 
(Marçais and Kingsford, 2011) (parameters:count -t 8 -C -m 21 –min- 
quality = 20 –quality-start = 33), CovEST (Hozza et al., 2015; available at 
https://github.com/mhozza/covest), and GenomeScope2 (Vurture 
et al., 2017; available at https://qb.cshl.edu/genomescope/genomesc 
ope2.0/). We used the gatb-minia-pipeline (available at https://github. 
com/GATB/gatb-minia-pipeline) for the de novo assembly using 
default settings and fixed the k-mer size to 81. We used the software 
RagTag v.2.1.0 (Alonge et al., 2021) to improve the genome assembly, 
employing the seven already sequenced genomes for Elateroidea as 
references (reference genome details in Table S1). The scaffolded sta-
tistics were evaluated using QUAST 5.0.0 (Gurevich et al., 2013). For the 
mitochondrial genome assembly, we used GetOrganelles software (Jin 
et al., 2020) with the default settings and the MITOS Web Server (Bernt 
et al, 2013) for annotation. Gene prediction was performed using the 
Maker pipeline v.3.01 (Cantarel et al., 2008), which included Augustus 
v.3.4.0 (Stanke et al., 2006), GeneMark-ES v.2.3c (Ter-Hovhannisyan 
et al., 2008), and FGENESH (Solovyev et al., 2006) gene prediction 
tools. We used the default settings combined with transcriptome-based 
nucleotide and amino acid sequences generated by Amaral et al. 
(2017a) to improve the prediction. Transposable element DNA elements 
were identified and annotated using RepeatModeler v.1.0.8 (see htt 
ps://www.repeatmasker.org/RepeatModeler) and RepeatMasker 
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v.4.0.9 (see https://www.repeatmasker.org/). The annotation of the 
coding regions was conducted using the tool BLASTX against the Swis-
sProt database (retrieved on 05/2020). The GO terms were plotted and 
visualized using WEGO2.0 (Ye et al., 2018). The completeness of the 
genes was estimated using BUSCO v.3.0.2 software using the Arthropoda 
database and the complete scaffold (Simão et al., 2015). 

2.3. Orthologous protein clustering, gene family evolution, and 
phylogenetic analysis 

Available genomic data from seven Elateriformia species (details in 
Table S1) were utilized to perform comparative genomic analyses. The 
orthogroup identification and the expanded and contracted gene fam-
ilies were identified with OrthoFinder v.2.0.9 (Emms and Kelly, 2015) 
and CAFÉ v.4.2.1, respectively, using birth and death rates (Han et al., 
2013). The alignment was conducted in mafft v.4.87 software (Katoh 
et al., 2002). The ultrametric tree used to determine expansion and 
contraction family size was performed using r8s v.1.81 software 
(Sanderson, 2003). The phylogenetic relationship topology was esti-
mated using 359 conserved single-copy orthologs in IQtree2 (Minh 
et al., 2020) in 1,000 ultrafast bootstraps. The divergence time estimates 
were performed using the phylogeny generated by IQtree2 and two 
secondary calibration points (the crown age of Elateroidea: 217.5–130.1 
Mya, and the crown age of Lampyridae + Phengodidae; 123.3–90.8 
Mya) obtained by Amaral et al. (2019a), within the treePL v.1.0 (Smith 
and O’Meara, 2012). 

2.4. Positive selection genes (PSG) analysis 

Positive selection genes analysis, on a genomic-scale, was carried out 
using the codeml program, a codon-based model within a maximum- 
likelihood framework, present in PAML v.4.8 package (Yang, 2007). 
This approach calculates the tree-based ratio between nonsynonymous 
(dN) and synonymous (dS) substitution, known as omega (ω). Thus, 
genes with the value of ω > 1 evidenced positive selection. The condon- 
alignment was conducted in prank v.170427 software (Löytynoja, 
2014). We also used a branch-site model to detect episodic positive se-
lection at i.) P. hirtus branch and ii.) branches along the phylogenetic 
tree that lead to bioluminescent species. The Bayes Empirical Bayes 
(BEB) method was used to infer sites under positive selection and false 
positives were checked using the likelihood ratio test and multiple tests 
(FDR of 5 %) based on the R script proposed by Lee et al. (2017). 

2.5. Luciferase gene identification 

To identify the putative luciferase gene length, the raw reads were 
mapped against the luciferase of Phengodidae species available in public 
databases using the bowtie2 v.2.4.3 tool (Langmead and Salzberg, 
2012). We processed the reads using Samtools v.1.9 (Li et al., 2009) and 
concatenated them using CAP3 v.10.2011 (Huang and Madan, 1999) 
software. 

3. Results and discussion 

3.1. De novo genome assembly and annotation 

Here, we generated and assembled ~ 190 Gb (56.8-fold coverage) 
from Illumina short reads and ~ 65 Gb (20.2-fold coverage) from Illu-
mina mate-pair reads (Table S2 and S3; scaffolded genome is detailed in 
Table S3). The genome of P. hirtus is the first genome in the Phengodidae 
family and the seventh sequenced and available genome within the 
Elateroidea superfamily. The assembly length, ~3.40 Gb, was consistent 
with the k-mer estimate genome size (~3.4 Gb in Jellyfish2.0 and 
CovEst, and ~ 3.35 Gb in GenomeScope; the k-mer distribution gener-
ated by Jellyfish2.0 is observed in Fig. S1). To date, this is the largest 
described genome among Elateroidea species (from 0.42 Gb to 2.2 Gb) 

and Coleoptera (from 0.15 Gb to 2.7 Gb) (Hanrahan and Johnston, 2011; 
Fu et al., 2017; Lower et al., 2017; Fallon et al., 2018). Previously, we 
showed that the mtDNA genome of P. hirtus is also larger than those of 
other Elateroidea species, with duplication events and a larger control 
region (Amaral et al., 2016a). Several hypotheses have been suggested 
and tested to evaluate the genome size correlation in Coleoptera, 
including body size (morphological; Palmer and Petitpierre, 1996), 
chromosome number (Petitpierre et al., 1993), methylation rate (Lech-
ner et al., 2013), and reproductive fitness (Arnqvist et al., 2015). 
However, the genome size correlation in railroad worms needs to be 
better explored, including new species and morphological, environ-
mental, and genomic data. 

Gene prediction using the Maker pipeline shows that the best pre-
diction was generated by Augustus, which resulted in 92,234 complete 
and partial gene products. The predicted proteins were searched against 
the SwissProt database and assigned to the putative function (Fig. S2). 
These observed GO terms are common in most arthropods and are 
responsible for basic physiologic processes and metabolic activities that 
are essential. The genome contains approximately 70 % complete single- 
copy orthologs and multicopy orthologs (BUSCO), which indicate that 
most parts of the genes were recovered. The percentage of observed GC 
content was ~ 32 %, and the estimated heterozygosity was approxi-
mately 0.25 %. We obtained a total of ~ 12 million transposable ele-
ments (2,326,217,477 bp, or 2.4 Gb), representing approximately 67 % 
of the total length of the assembled scaffolds (Table S4). 

Mitochondrial genome. Recently, we published the partial 
sequence of P. hirtus mtDNA, with an incomplete portion of the A + T- 
rich region (Amaral et al., 2016a). Here, we could completely assemble 
the circular mitogenome of P. hirtus, which displayed 20,303 bp, similar 
to that previously studied in this species (Amaral et al., 2016a), con-
firming the largest mtDNA in Elateroidea. The mtDNA showed 2 ribo-
somal RNAs (rnaS and rnaL), 13 protein-coding genes (PCG), and 21 
tRNAs (loss of tRNA-A; Table S5). The loss of tRNAs, such as TrnD in 
Mesobuthus martensii (Chelicerata), is commonly observed among Cole-
optera (Gissi et al., 2008). A larger A + T-rich region (5,661 bp), which 
includes four partial copies of the ND2 gene and tRNA-Q, was observed. 
Similar to the nuclear genome, these results also support the evidence of 
the high dynamism of the P. hirtus genome. 

3.2. Repetitive element DNA content 

The interspecies genome size variation could be the result of gene/ 
genome duplication and/or deletion events (Blommaert, 2020). How-
ever, the rearrangements and duplication of transposable element (TEs) 
sequences may also imply larger genome sizes (Talla et al., 2017). 
Studies have shown the role of TE as potential substrates for new genes 
and their association with gene expression (e.g., epigenetic regulation), 
as well as a stress response (regulatory sequence) (Rech et al., 2019; 
Choi and Lee, 2020; Fedoroff, 2012). Thus, these elements could be 
major drivers of genome evolution in eukaryotes (Quesneville, 2020). 

According to BUSCO, there was no excess of duplicated genes (7.42 
% of duplicates). Nevertheless, the analysis of the landscape of TEs 
(Table S4) of P. hirtus showed that its genome has a great part of base- 
pair length composed of transposable elements (~67 %; 2.4 Gb). The 
percentages of TE content in Elateroidea vary from 19.8 % (~190 Mb) in 
A. lateralis to 42.6 % (~180 Mb) in P. pyralis (Fallon et al., 2018). In 
P. hirtus, the majority of these TEs were unclassified (46.83 %), followed 
by DNA transposons (12.3 %). Recent studies have also discussed the 
variation in TE contents among Coleoptera, Diptera (6 % in Belgica 
antarctica to 58 % in Anopheles gambiae), Hymenoptera (less than 6 % in 
Apis mellifera and Athalia rosae), and Orthoptera (58 % in Locusta 
migratoria), which suggested that transposable elements are highly dy-
namic in Insecta (Hazzouri et al., 2020). 
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3.3. Orthologous analysis and evolution of gene families in Elateriformia 

The orthologous analysis using the amino acid sequences of Elater-
iformia species (A. terminalis, L. yunnana, P. pyralis (Lampyridae), 
I. luminosus, Limonius californicus (Elateridae), P. hirtus (Phengodidae), 
and Agrilus planipennis (Buprestidae) showed 17,862 orthologous gene 
families. Among them, 2,001 orthogroups (11.2 % of the total) were 
commonly shared among all species (Fig. 2), with only 359 orthogroups 
displaying a single gene copy, which were applied to phylogenetic 
reconstruction (Fig. 1a); 523 orthogroups were exclusively observed in 
the P. hirtus genome. The bioluminescent species used in this study 
(excluding L. californicus and A. planipennis) shared 2,477 orthogroups; 
however, only 440 displayed single-copy genes. 

The molecular function ontology of the predicted gene shared among 
all Elateriformia species shows enrichment of catalytic activity and 
binding enzymes (Fig. S3). Among the gene products involved in enzy-
matic activities, the hydrolase and transferase classes were highlighted, 
while among the binding-related gene products, ion binding, heterocy-
clic binding, organic cyclic compound binding, and protein binding 
were highlighted (Table S6). The biological processes of the shared GO 
were mostly enriched for cellular processes (regulation of cellular pro-
cess and cellular metabolic process), biological regulation (regulation of 
biological quality), regulation of biological process (regulation of 
metabolic process), and metabolic process (nitrogen compound meta-
bolic process, organic substance metabolic process, and primary meta-
bolic process) (Fig. S3A and S3C). 

We separately evaluated the orthogroups associated only with the 
bioluminescent species of Elateroidea (Table S7). Considering these five 
species, we obtained 2,477 orthogroups, whereas 476 were exclusively 
for bioluminescent individuals. Here, we identified several families of 
general odorant-binding proteins (OBPs) responsible for recognizing and 
transporting hydrophobic odorants to the antennal sensilla and acti-
vating the olfactory signal transduction pathway (Li et al., 2016). In 
most flashing firefly species, such as P. pyralis, the bioluminescence 
signal pattern (flash, continuum/glow, etc.) is the main factor respon-
sible for intraspecific long-distance communication. However, in rail-
road worms, it is known that pheromone detection plays a major role in 
sexual attraction (Jacobson, 2012). The presence of several OBP gene 
families supports the major role of pheromones in sexual attraction in 
Phengodidae. Thus, chemical and morphological studies using antennae 
and female-released pheromones are needed to better understand this 
communication system in phengodids. 

The comparative analysis did not show clear differences in the 
presence or absence of gene families among bioluminescent species and 
their closely related non-bioluminescent species, with the exception of 
the OBP gene families in Phengodidae. These results suggest that both 

bioluminescent and non-bioluminescent species, in general, possess 
similar groups of gene families, including luciferase and/or luciferase- 
like genes, and genes associated with the luciferin biosynthetic 
pathway (Niwa et al., 2006; Oba et al., 2013; Amaral et al., 2017a; 
2017b; 2019b; Zhang et al, 2020) such as sulfotransferases (Fallon et al., 
2016), etc. Therefore, the transcriptional expression level of these genes 
may determine the spatial and temporal control of morphogenesis as 
well as the bioluminescence in Elateroidea, rather than genomic fea-
tures. Future multi-omics approaches using transcriptomic, metab-
olomic, genomic, and proteomic data may help to support such 
hypotheses. 

3.4. Analysis of unique P. hirtus orthogroups 

We observed 523 orthogroups in P. hirtus that did not share direct 
orthology with the other studied species. In the annotation of these gene 
families, however, only a small part of the orthogroups was assigned 
(~12 %) (Table S8). From them, several TEs, such as LINE (long inter-
spersed nuclear element), Mos1, ATP translocases, and PiggyBac, were 
found in these orthogroups. The high amount of these elements exclu-
sively in the P. hirtus genome may partially explain the larger genome. 
The eukaryotic genome is highly dynamic and may have undergone 
events of gene duplication or even whole-genome duplications (Ting 
et al., 2004; Van de Peer et al., 2009; Mendivil and Ferrier, 2012). In 
arthropods, these mechanisms may have an important evolutionary 
significance when associated with adaptation to environmental changes 
and to the processes of biological and cellular regulation and simulta-
neous response to external stimuli (Kidwell, 2002; Chénais et al., 2012). 

We also observed in P. hirtus the gene families of craniofacial devel-
opment protein and heat shock, which seem to work in consonance with 
the development of wing dimorphism in arthropods (Carroll, 1995; 
Baral et al., 2019). However, in the case of P. hirtus, males undergo 
metamorphosis, and females do not. Moreover, for comparison between 
male and female morphology, RNA-Seq will be more informative than 
genome analysis, since we are not able to find sex-specific genes by 
genome comparison between males and females. Thus, more molecular 
and biochemical studies are necessary to understand the function of 
genes involved in metamorphosis and sexual differentiation in the 
family Phengodidae. 

3.5. Expansion of orthologous gene families 

The phylogenetic analysis showed a close relationship between 
Lampyridae and Phengodidae (Fig. 1a). Based on previous findings, 
Phengodidae diverged from the sister Palearctic family, Rhagoph-
thalmidae, at approximately 73.4 Mya, and from Lampyridae at 

Fig. 1. Phylogenetic context of Elateriformia. a. Phylogenetic tree depicting the relationship within Elateroidea bioluminescent species, with A. planipennis 
(Buprestidae) as the outgroup. b. The summary tree shows the inference of the gene family evolution based on the expansion (+red) and contraction (- blue) gene 
families in Elateriformia. The number between parentheses represents the number of rapidly evolving gene families. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 
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approximately 97.3 Ma (Amaral et al., 2019a). The ultrametric tree 
performed by the r8s software suggested that the divergence between 
Phengodidae and Lampyridae occurred even earlier, approximately 114 
Mya. within the Early Cretacean. 

In the past few years, comparative genomic studies have shown the 
dynamic aspect of genome size and gene families in rapidly evolving 
groups of species, such as plants and insects. The expansion and 
contraction of gene families seem to be pervasive and provide evidence 
that copy number changes are associated with natural selection acting 
under the particular adaptation of the species, such as changes in protein 
coding and regulatory regions (Han et al., 2009). These gene families 
with complex gene duplication histories in lineages deserve great 
attention. Here, we estimated the expansion and contraction of gene 
families among Elateriformia species. 

The protein orthogroups obtained were managed to identify signa-
tures of expansion in gene families among Elateriformia. The number of 
rapidly evolving, expanded, and contracted gene families is displayed in 
Fig. 1b. There were a total of 2,134 expanded and 7,581 contracted gene 
families among the internal branches of the Elateroidea families. The 
largest number of contraction gene families was found in P. hirtus 
(9,783), while the largest number of expansions was found in Limonius 
(4,268). The branches with the largest numbers of rapidly evolving gene 
families both led to the Elateridae and Lampyridae families (194 and 
173, respectively). The ancestor branch of Elateroidea displayed 1,514 
and 547 gene families with contractions and expansions, respectively. 

In the main branch of Elateroidea, the expanded gene families are 
associated with detoxification/metabolism of xenobiotics (cytochrome 
P450s, glutathione S-transferases, UDP-glucuronosyltransferases, etc.) (Ahn 
et al., 2012; Zhu et al., 2016; Rane et al; 2019) and were widely iden-
tified among the transcriptome datasets of Elateroidea (Amaral et al., 
2017a; 2017b; 2019b). These genes play fundamental roles in xenobi-
otic detoxification and the degradation of distinct molecules related to 

the insect diet, detoxification of metabolic compounds, resistance to 
pesticides, degradation of hormones (Xue et al., 2020), and the degra-
dation of the lucibufagins (defensive steroids) present in some firefly 
species (McKinley and Lower, 2020). The expansion of the luciferase 
gene family is observed only in Elateridae, with the presence of several 
luciferases and luciferase-like enzymes, some of them which are also 
found in non-bioluminescent species. In Lampyridae, we observed the 
expansion of the 4-coumarate-CoA-like ligases, but we did not identify the 
expansion of the luciferase gene family. However, we identified ex-
pansions of superoxide dismutase (SOD), cystathionine-B-synthase, and 
cysteine-rich protein 2-binding, which are associated with the protection 
of photocytes during hyperoxia and oxidative stress (Barros and 
Bechara, 1998), and with the availability of cysteine, the precursor of 
luciferin biosynthesis (Viviani et al., 2013; Kanie et al., 2016; Amaral 
et al., 2017a, 2017b; Zhang et al., 2020). 

3.6. Gene families expansion and PSG in P. hirtus 

From the 1,491 gene families expanded within P. hirtus, 1,346 were 
annotated (Table S9), most of them related to the multicellular organ-
ismal development, anatomical development and morphogenesis, and 
multiorganism processes (negative regulation of metabolic process). 
Besides, PSG analysis displayed 34 genes highly prone to adaptive se-
lection involved with sex determination, organismal development, and 
morphogenesis (e.g., doublesex- and mab-3-related transcription factor A2- 
like, tektin-2, and patj homolog; Table 1; for more details on gene function 
enrichment see Table S10). Among them, are proteins that determine the 
formation, expression of spermatids, and apico-basal cell polarity 
(Amos, 2008; Sen et al., 2012; Zhuo et al., 2018), sex determination and 
differentiation, and cell-adhesion and morphogenetic role (Cabrera 
et al., 2017). Thus, these gene products are observed in insects associ-
ated with the ontogenetic evolution of the organism, orchestrating the 

Fig. 2. Bar plot of shared and unique orthologs among Elateriformia genomes. In blue, the number of single-copy genes shared among the species in comparison to 
multiple copies orthogroups (in black). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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complex processes that contribute to embryogenic and growth devel-
opment (Hill et al., 2010). Several gene families displayed distinct 
orthologs in P. hirtus, such as axin-1 like (anterior development in 
Coleoptera; Fu et al., 2012), chromobox protein homolog (crucial in the 
establishment and maintenance of heterochromatin in larvae; Shoji 
et al., 2013), doublesex- and mab-3-related transcription factor (Sex 
determination mechanisms and sex differentiation; Rather and Dhan-
dare, 2019), and forkhead box (insulin signaling pathway and regulation 
of physiological processes and juvenile hormone degradation; Zeng 
et al., 2017). These gene products related to anatomical development 
and morphogenesis in P. hirtus might be associated with paedomorphic 
females and underdeveloped males. However, studies including speci-
mens of both sexes and other omics approaches (e.g., RNA-Seq) could 
bring a better view of this question. 

In the P. hirtus genome, we also identified olfactory, gustatory, 
odorant, and ionotropic receptor gene families in expansion, supporting 
the important role of intraspecific chemical communication in Phen-
godidae. The expansion of chemosensory gene families is associated 
with gustatory and odorant receptor 22, olfactory receptor 2AG1, glutamate 
receptor subunit 1, and glutamate receptor ionotropic, kainate 2. The che-
mosensory genes in insects are involved in mating, feeding, and coor-
dinating actions (e.g., attack, defense, escape), among others (Yuvaraj 
et al., 2018; Blomquist and Ginzel, 2021), and are important physio-
logical and ecological processes during the speciation process (mate 
isolation from its closely related species; Wu et al., 2019). Odorant and 
gustatory receptors are able to detect volatile chemicals, such as pher-
omones, which could be responsible for intraspecific communication, 
including mating. In Phengodidae, where the female is neotenic and the 

Table 1 
List of positively selected genes and sites with posterior probabilities (model M1a and M2a) > 0.95(*) and > 0.99(**) to P. hirtus branch model analysis.  

Gene ID lnL (alternative) lnL (null) ΔLRT p-value Significant BEB sites (Codon position, First species amino 
acid, Posterior probability) 

Annotation 

ENSG0010898  − 3532.24982  − 3536.806604  9.113568  0.002537205 224 F 0.992**;226 F 0.994**;226 F 0.994**;312 D 
0.986*;313 S 0.998**;332 S 0.997** 

tribbles homolog 2 

ENSG0009695  − 9616.284029  − 9620.311544  8.05503  0.004537749 1027 E 0.982*;1089 V 0.993**;1117 R 0.979*;1118 A 
0.994** 

tektin-2 

ENSG0009802  − 9612.657841  − 9615.710852  6.106022  0.013472202 1030 C 0.974*;1032 E 0.991**;1075 K 0.983* zinc finger MYND domain- 
containing protein 11 

ENSG0010630  − 9826.653828  − 9828.86049  4.413324  0.035659292 1059 A 0.965*;1061 N 0.965*;1062 V 0.987* patj homolog 
ENSG0009881  − 7514.638828  − 7516.817471  4.357286  0.03685097 1148 H 0.992** inhibitor of growth protein 

3 isoform X2 
ENSG0009771  − 4768.982854  − 4772.220721  6.475734  0.010935714 124 A 0.961*;268 M 0.964*;518 S 0.992** ribosomal protein S6 

kinase beta-1 
ENSG0009598  − 3433.038808  − 3435.887005  5.696394  0.016999804 136 H 1.000**;138 D 0.998**;139 S 0.993**;143 K 

0.995**;173 K 0.994**;202 N 
0.970*;287–0.998**;306–0.991** 

keratin. type I cytoskeletal 
9-like 

ENSG0010825  − 3958.944895  − 3961.147891  4.405992  0.03581289 177 G 0.994**;223 V 0.991**;225 Q 0.998**;275 N 
0.999**;290 S 0.954*;296 Q 0.982*;300 T 0.988* 

protein extra-macrochaeta 

ENSG0010568  − 17553.942  − 17557.75385  7.62371  0.005760586 1794 Q 0.996** inactive serine protease 
scarface/serine protease 
H164/proteoglycan 4-like 

ENSG0009519  − 4102.971156  − 4108.854656  11.767  0.000602901 191 S 1.000**;194 S 1.000**;232 H 1.000**;261 V 
0.999**;265 N 0.990**;266 N 0.999**;271 K 0.991**;273 F 
0.999**;278 H 0.999**;303 N 0.998**;305 Q 0.989*;307 V 
0.970*;381 P 1.000**;398 E 0.999**;399 P 0.999** 

doublesex- and mab-3- 
related transcription 
factor A2-like 

ENSG0010360  − 7199.219248  − 7202.509468  6.58044  0.01031054 228 T 0.994**;376 S 0.990* actin-interacting protein 1 
ENSG0009515  − 4710.647248  − 4713.587461  5.880426  0.015310117 276 H 0.999** hypothetical protein 

FQR65_LT06461 
[Abscondita terminalis] 

ENSG0011016  − 3866.798051  − 3868.803408  4.010714  0.045212 276 S 0.984* protein bric-a-brac 2-like 
ENSG0009844  − 5156.233372  − 5158.622022  4.7773  0.028837301 281 A 0.967* cuticle protein 18.7 
ENSG0010683  − 10912.90856  − 10916.80332  7.78951  0.005255045 296 A 0.999**;369 H 0.978*;385 M 0.969*;586 A 

0.971*;591 K 0.999**;777 D 0.999**;778 P 0.998**;779 R 
0.978* 

transcription elongation 
regulator 1 

ENSG0011001  − 5556.064378  − 5562.951982  13.775208  0.000206037 344 Q 0.995**;422 R 0.987*;424 Y 0.992**;436 A 
0.992**;456 Q 0.974* 

cuticle protein 16.5. 
isoform A 

ENSG0009448  − 13752.44004  − 13754.41753  3.954984  0.046732762 373 Q 0.990*;667 V 0.981* flocculation protein 
FLO11-like 

ENSG0010619  − 2112.44771  − 2117.455663  10.015906  0.001551941 42 D 0.996**;73 F 0.999**;90 K 0.989*;95 K 0.995** hypothetical protein 
FQR65_LT14274 
[Abscondita terminalis] 

ENSG0010394  − 6492.523227  − 6498.303029  11.559604  0.000674002 533 L 0.974*;534 S 0.996**;536 R 0.967*;537 C 
1.000**;538 E 0.985* 

ruvB-like 2 

ENSG0010273  − 4098.001187  − 4100.29939  4.596406  0.032039054 59 R 0.963*;343 T 0.975* pre-mRNA-splicing 
regulator female-lethal(2) 
D 

ENSG0010779  − 3071.067155  − 3083.157105  24.1799  8.77433E-07 60 E 0.996**;65 F 0.971*;79 Y 0.997**;103 L 0.988*;106 A 
0.987*;107 A 0.961*;120 S 0.950*;177 E 0.959*;178 D 
0.982*;179–0.987*;213–0.991**;256 R 0.955* 

hypothetical protein 
FQR65_LT03434 
[Abscondita terminalis] 

ENSG0010722  − 9890.522387  − 9893.80325  6.561726  0.010419526 685 Q 0.954*;752 Y 0.966*;756 E 0.993**;757 K 
0.991**;758 G 0.995**;763 W 0.984*;819 G 0.995**;823 K 
0.972*;846 E 0.979*;847 D 0.991** 

transcription factor TFIIIB 
component B’’ homolog 

ENSG0010560  − 18191.01715  − 18193.56935  5.104412  0.023865067 796 N 0.988* nuclear receptor 
coactivator 1 isoform X3 

ENSG0009836  − 7523.011818  − 7528.740507  11.457378  0.000712107 82 K 0.977*;99 N 0.985*;302–0.981*;356 V 0.994**;670 K 
0.997** 

DNA-binding protein D- 
ETS-6-like 

ENSG0010374  − 12916.96656  − 12919.01983  4.106526  0.042718025 908 E 0.982*;952 H 0.968* calpain-D-like  
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winged male displays a well-developed antenna (Costa et al., 1999), 
chemosensory communication is critical for sexual attraction. However, 
we did not observe the expansion of the protein binding gene families, 
pheromones, or odorant carriers, indicating distinct evolutionary routes 
for the receptor and binding mechanisms in Phengodidae. 

3.7. Evolution of bioluminescence in Phengodidae 

Based on previous molecular analyses involving genomic and tran-
scriptomic data and biochemical studies (Niwa et al., 2006; Viviani 
et al., 2013; Oba et al., 2013; Kanie et al., 2016; Vongsangnak et al., 
2016; Amaral et al., 2017a; 2017b; 2019b; Fallon et al., 2018; Zhang 
et al., 2020), we searched for specifically described gene products that 
could be involved in the bioluminescence process in Elateroidea, mainly 
in P. hirtus. Here, we focused on luciferase evolution and putative can-
didates involved in bioluminescence emission control, antioxidant en-
zymes, and the luciferin biosynthesis pathway. 

The number of AMP-forming enzymes, a gene family related to the 
activated acetate to acetyl-coenzyme A (e.g., fatty acyl-CoA synthetase) 
in which the luciferases are classified (Day et al., 2004), were abundant 
in the Elateroidea species (ca. 15), including bioluminescent and non- 
bioluminescent species. In the last few years, transcriptomic and 
genomic data were able to recover the distinct isoforms of luciferase and 
luciferase-like enzymes, and the comparison between their primary 
amino-acid sequences demonstrated the relationship between these 
isoforms and their evolution in Elateroidea. The presence of luciferase 
isozymes in the cephalic and lateral lanterns of Mastinocerini larvae was 
first shown by Viviani and Becham (1993) and confirmed after cDNA 
cloning of green and red-emitting luciferases (Viviani et al., 1999). 
Arnoldi et al. (2010), evaluating the relationship between the luciferase 
isoforms of Mastinocerini tribe species (Phengodidae), showed the 
presence of two luciferase paralogs, one in the cephalic lantern and one 
in the lateral body lanterns. These enzymes seem to be more closely 
related to the same lantern of different species than to the distinct lan-
terns of the same individual, suggesting an event of gene duplication and 
paralogy. 

We were not able to completely assemble the genomic regions that 
contain the luciferase gene, including the putative promoter region 
(only partial fragments). Thus, the raw reads were mapped against 
known Phengodidae luciferases. Using this strategy, we identified two 
genes that displayed 90 % similarity to the luciferases of railroad worm 
species, which were named PhLuc1 and PhLuc2. The gene length for 
PhLuc1 was 2,019 bp (similar to that of yellow-green emitting lateral 
lantern luciferase), while that for PhLuc2 was 2,220 bp (similar to that of 
red-emitting cephalic lantern luciferase). Both genes comprise seven 
exons and six introns (Fig. 3), which is a similar number of intergenic 
components observed for the luciferase of P. pyralis firefly (Fallon et al., 
2018) and P. plagiophthalamus click beetle (Elateridae; Feder and Velez, 
2009). The possible duplication event that originated both putative 

luciferases (Arnoldi et al., 2010) could be followed by a dynamic 
structural genomic change, altering the intron size, mainly introns 1, 3, 
and 6 (Fig. 3). However, we did not observe evidence of intergenic 
combination in this species. The average sizes of exons and introns were 
~ 230 bp and ~ 100 bp, respectively. 

Recent studies using transcriptome and genomic data described 
possible gene products associated with bioluminescent control in Ela-
teridae, Lampyridae, and Phengodidae (Amaral et al., 2017a; 2017b; 
2019b; Zhang et al., 2020), such as nitric oxide synthase and octopamine/ 
dopamine receptors (firefly flash control; Trimmer et al., 2001). Here, 
only nitric oxide synthase and dopamine/octopamine receptor genes were 
found. In Lampyridae genomes, only a copy of the nitric oxide synthase 
gene was also identified, suggesting a unique gene associated with the 
control of available oxygen concentration inside the photocytes, through 
inhibition of the respiratory chain. The number of dopamine/octopamine 
receptors in fireflies was between 8 and 10 copies, much higher than that 
observed in phengodids, consistent with the need for flash control in the 
adult stage of fireflies. 

In the P. hirtus genome, gene products that were already described as 
potentially associated with luciferin biosynthesis in luminescent Ela-
teroidea were identified. Among them, adenosylhomocysteinase and 
cysteine sulfinic acid decarboxylase are associated with the conversion of 
homocysteine to cysteine which may spontaneously react with p-ben-
zoquinone to generate luciferin (Kanie et al., 2016). The gene products 
involved in tyrosine metabolism (tyrosine aminotransferase, tyrosine hy-
droxylase, 4-hydroxyphenylpiruvate dioxygenase, and homogentisate 1,2- 
dioxygenase) and the cascade reaction of the L-DOPA pathway (dopa-
mine/octopamine receptor, dopamine N-acetyltransferase, sodium- 
dependent dopamine transporter, and phenoloxidase and phenoloxidase 
activating factor) were also observed. The luciferin-regenerating enzyme 
gene (LRE) and a gene of luciferin sulfotransferase (converting luciferin 
to a stable storage compound, sulfoluciferin; Fallon et al., 2016) were 
identified. However, we did not recover any acyl-CoA thioesterase (ACT) 
gene that could be involved in the conversion of L-luciferin into D-luciferin 
(Niwa et al., 2006), whereas we observed the expansion of this gene 
family among Lampyridae. Rather, we identified two genes of palmitoyl- 
protein thioesterase (a specific group within ACT), which is a lysosomal 
enzyme that removes fatty acyl groups from cysteine residues (Glaser 
et al., 2003), with a similar function to the ACT genes in peroxisomes 
(Lousa et al., 2013). These results suggest that luciferin biosynthesis may 
take similar pathways within Elateroidea bioluminescent species, 
although some steps or gene products involved in these pathways may 
have evolved differently during the diversification of the Elateroidea 
families, or were not recovered during genome annotation, such as the 
case of Acyl-CoA thioesterase. 

4. Concluding remarks 

We combined short and mate-pair reads generated with Illumina 

Fig. 3. Intergenic regions of the two putative luciferases of P. hirtus. The different box colors represent the seven exons identified in the sequences. PhLuc1 is more 
similar to the yellow-green emitting lateral lantern luciferase, while PhLuc2 is more similar to the red-emitting cephalic lantern luciferase. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 
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platform to assemble the first draft genome of a Phengodidae member, 
the South-American P. hirtus railroad worm. This is the largest genome 
observed in the Elateroidea superfamily, with >60 % of its size popu-
lated by TE, including the presence of several retrotransposable ele-
ments, such as LINE, MOS1, and PiggyBac. The comparative genomic 
analyses display PSGs and unique expanded gene families related to 
anatomical development, morphogenesis, and chemoreception, which 
may be consistent with the distinctive neoteny and sexual dimorphic 
development in this species, and with the intraspecific pheromone- 
mediated communication, typical of this family of beetles. 
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